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21 THE STOCHASTIC BEHAVIOR OF RETURNS

211 Revisiting the assumptions

In the previous chapter we discussed the notion of VaR. Measurmng
vaR involves identifying the tail of the distribution of asset returns.
One approach to the problem is to impose specific distributional
assumptions on asset returns. This approach is commonly termed the
parametric approach, requiring a specific set of distributional assump-
tions. As we saw in the previous chapter, if we are willing to make a
specific parametric distributional assumption, for example, that asset
returns are normally distributed, then all we need is to provide two
parameters — the mean (denoted p) and the standard deviation
(denoted o) of returns. Given those, we are able to fully characterize the
distribution and comment on risk in any way required; in particular,
quantifying VaR, percentiles (e.g., 50 percent, 98 percent, 99 percent,
etc.} of a loss distribution.

The problem is that, in reality, asset returns tend to deviate from
3 riormality. While many other phenomena in nature are often well
described by the Gaussian (normal) distribution, asset returns tend to
deviate from normality in meaningful ways. As we shall see below in
detail, asset returns tend to be:

« Fat-tailed: A fat-tailed distribution is characterized by having more
probability weight (observations) in its tails relative to the normal
distribution.

«  Skewed: A skewed distribution in our case refers to the empirical
fact that declines in asset prices are more severe than increases.

g This is in contrast to the symmetry that is builr into the normal

distribution.

« Unstable: Unstable parameter values are the result of varying mar-
ket conditions, and their effect, for example, on volatility.

All of the above require a risk manager to be able to reassess distribu-
f tional parameters that vary through time.

? In what follows we elaborate and establish benchmarks for these
effects, and then proceed to address the key issue of how to adjust
our set of assumptions to be able to better model asset returns, and
better predict extreme market events. To do this we use a specific dataset,
allowing us to demonstrate the key points through the use of an
example.
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* 212 The distribution of interest rate changes

Consider a series of daily observations of interest rates. In the series
described below we plot three-month US Treasury bill (T-bill} rates
calculated by the Federal Reserve.! We use ten years of data and hence
we have approximately 2,500 observations. For convenijence let us
assume we have 2,501 data points on interest rate levels, and hence
2,500 data points on daily interest rate changes. Figure 2.1 depicts the
time series of the yield to maturity, fluctuating between 11 percent
p.a. and 4 percent p.a. during the sample period (in this example,
1983-92).

The return on bonds is determined by interest rate changes, and hence
this is the relevant variable for our discussion. We calculate daily
interest changes, that is, the first difference series of observed yields.
Figure 2.2 is a histogram of yield changes. The histogram is the result
of 2,500 observations of daily interest rate changes from the above
data set.

Using this series of 2,500 interest rate changes we can obtain the
average interest rate change and the standard deviation of interest rate
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Figure 2.1 Three-month Treasury rates
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Figure 2.2 Three-month Treasury rate changes

changes over the period. The mean of the series is zero basis points
per day. Note that the average daily change in this case is simply the
last yield minus the first yield in the series, divided by the number of
days in the series. The series in our case starts at 4 percent and ends
at a level of 8 percent, hence we have a 400 basis point (bp) change
over the course of 2,500 days, for an average change of approximately
zero. Zero expected change as a forecast is, as we discussed in the
, previous chapter, consistent with the random walk assumption as well.
The standard deviation of interest rate changes turns out to be
7.3bp/day.

Using these two parameters, figure 2.2 plots a normal distribution
curve on the same scale of the histogram, with basis point changes
on the X-axis and probability on the Y-axis. If our assumption of
normality is correct, then the plot in figure 2.2 should resemble the
theoretical normal distribution shown in figure 1.1. Observing fig-
ure 2.2 we find some important differences between the theoretical
normal distribution using the mean and standard deviation from our
data, and the empirical histogram plotted by actual interest rate
changes. The difference is primarily the result of the “fat-tailed”
nature of the distribution.
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2.1.3 Fat tails

The term “fat tails” refers to the tails of one distribution relative to another
reference distribution. The reference distribution here is the normal
distribution. A distribution is said to have “fatter tails” than the nor-
mal distribution if it has a similar mean and variance, but different
probability rass at the extreme tails of the probability distriburion. The
critical point is that the first two moments of the distribution, the mean
and the variance, are the same.

This is precisely the case for the data in figure 2.2, where we observe
the empirical distribution of interest rate changes. The plot includes
a histogram of interest rate changes in different probability buckets.
In addition to the histogram, and on the same plot, a normal dis-
tribution is also plotted, so as to compare the two distributions. The
normal distribution has the same mean {zero) and the same volatility
(7.3 basis points) as the empirical distriburion.

We can observe “fat tail” effects by comparing the two distributions.
There is extra probability mass in the empirical distribution relative
to the normal distribution benchmark around zero, and there is a
“missing” probability mass in the intermediate portions around the
plus ten and minus ten basis point change region of the histogram.
Although it is difficult to observe directly in figure 2.2, it is also the
case that at the probability extremes (e.g., around 25bp and higher),
there are more observations than the theoretical normal benchmark
warrants. A more detailed figure focusing on the tails is presented later
in this chapter.

This pattern, more probability mass around the mean and at the tails,
and less around plus/minus one standard deviation, is precisely what
we expect of a fat tailed distribution. Intuitively, a probability mass
is taken from around the one standard deviation region, and distrib-
uted to the zero interest rate change and to the two extreme-change
regions. This is done in such way so as to preserve the mean and
standard deviation. In our case the mean of zero and the standard
deviation of 7.3bp, are preserved by construction, because we plot the
normal distribution benchmark given these two empirically determined
parameters.

To illustrate the impact of fat tails, consider the following exercise.
We take the vector of 2,500 observations of interest rate changes, and
order this vector not by date but, instead, by the size of the interest
rate change, in descending order. This ordered vector will have the
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i

larger interest rate increases at the top. The largest change may be,
for example, an increase of 35 basis points. It will appear as entry
number one of the ordered vector. The following entry will be the
second largest change, say 33 basis points, and so on. Zero changes
should be found around the middle of this vector, in the vicinity of the
1,250th entry, and Jarge declines should appear towards the “bottem”
of this vector, in entries 2,400 to 2.500.

1 it were the case that, indeed, the distribution of interest rate changes
were normal with a mean of zero and a standard deviation of 7.3 basis
points, what would we expect of this vector, and, in particular, of the
tails of the distribution: of interest rate changes? In particular, what
should be a one percentile (%) interest rate shock; i.e., an interest
rate shock that vccurs approximately once in every 100 days? For
the stendard normal distribution we know that the first percentile
is delineated at 2.33 standard deviations from the mean. In our case,
though, losses in asset values are related to fncreases in interest rates.
: Hence we examine the +2.33 standard deviation rather than the
--2.33 standard deviation event (i.e., 2.33 standard deviations above
the mean rather than 2.33 standard deviations below the mean). The
+2.33 standard deviations event for the standard normal translates
into an increase in interest rates of ¢ x 2.33 or 7.3bp x 2.33 = 17bp.
Under the assumption that interest rate changes are normal we
should, therefore, see in 1 percent of the cases interest rate changes
that are greater or equal to 7 basis points.

What do we get in reality? The empirical first percentile of the dis-
: tribution of interest rate changes can be found as the 25th out of the
g 2,500 observations in the ordered vector of interest rate changes.
Examining this entry in the vector we find an interest rate increase
of 21 basis points. Thus, the empirical first percentile (21bp) does not
conform to the theoretical 17 basis points implied by the normal-
ity assumption, providing a direct and intuitive example of the fat
tailedness of the empirical distribution. That is, we find that the
(empirical) tails of the actual distribution are fatter than the thecret-
ical tails of the distribution.?

2.1.4 Explaining fat tails

The phenomenon of fat tails poses a severe problem for risk managers.
Risk measurement, as we saw above, is focused on extreme events,
trying to quantify the probability and magnitude of severe Josses. The
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normal distribution, a common benchmark in many cases, seems to
fail here. Moreover, it seems to fail precisely where we need it to work
best — in the tails of the distributions. Since risk management is all
about the tails, further investigation of the tail behavior of asset
returns is required.

In order to address this issue, recall thar the distribution we
examine is the unconditional distribution of asset returns. By “uncon-
ditional” we mean that on any given cday we assume the same
distribution exists, regardless of market and economic conditions. This
is in spite of the fact that there is information available to market
participants about the distribution of asset returns at any given point
in time which may be different than on other days. This information
is relevant for an asset’s conditional distribution, as measured by par-
ameters, such as the conditional mean, conditional standard deviation
(volatility!, conditional skew and kurtosis. This implies two possible
explanations for the fat tails: (i) conditional volatility is time-varying; and
(ii) the conditional mean is time-varying. Time variations in either
could, arguably, generate fat tails in the unconditional distribution, in
spite of the fact that the conditional distribution is normal (albeit with
different parameters at different points in time, e.g., in recessions and
expansions).

Let us consider each of these possible explanations for fat tails. First,
is it plausible that the fat tails observed in the unconditional distri-
bution are due to time-varying conditional distributions? We will
show that the answer is generally “no.” The explanation is based on
the implausible assumption that market participants know, or can pre-
dict in advance, future changes in asset prices. Suppose, for example,
that interest rate changes are, in fact, normal, with a time-varying con-
ditiona} mean. Assume further that the conditional mean of interest
rate changes is known to market participants during the period under
investigation, but is unknown to the econometrician. For simplicity,
assume that the conditional raean can be +5bp/day on some days, and
—5bp/day on other days. If the split between high mean and low mean
days were 50--50, we would observe an unconditiontal mean change
in interest rates of Obp/day.

In this case when the econometrician or the risk manager
approaches past data without the knowledge of the conditional
means, he mistakes variations in interest rates to be due to volatility.
Risk is overstated, and changes that are, in truth, distributed normally
and are centered around plus or minus five basis points, are mistaken

to be normal with a mean of zero. If this were the case we would
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Lhave obtained a “mixture of normals” with varying means, that
would appear to be, unconditionally, fat tailed.

Is this a likely explanation for the observed fat tails in the data? The
answer is negative, The belief in efficient markets implies that asset
prices reflect all commonly available information. If participants in the
rnarketplace know that prices are due to rise over the next day, prices
would have already risen today as traders would have traded on this
information. Even detractors of market efficiency assumptions would
agree that conditional means do not vary enough cn a daily basis to
rmake those variations a first order effect.

To verify this point consider the debate over the predictability of
rarket returns. Recent evidence argues that the conditional risk
premium, the expected return on the market over and above the risk
free rate, varies through time in a predictable manner. Even if we
assumne this to be the case, predicted variations are commonly esti-
rnated to be between zero and 10 percent on an annualized basis.
Moreover, variations in the expected premium are slow to change (the
predictive variables that drive these variations vary slowly). If at a given
point you believe the expected excess return on the market is 10
percent per annum rather than the unconditicnal value of. say, 5 per-
cent, you predict, on a daily basis, a return which is 2bp different from
the market’s average premium (a 5 percent per annum difference equals
approximately a return of 2bp/day). With the observed volatility of
equity returns being around 100bp/day, we may view variations in
the conditional mean as a second order effect.

The second possible explanation for the fat tail phenomenon is
that volatility (standard deviation) is time-varying. Intuitively, one
can make a compelling case against the assurnption that asset return
volatility is constant. For example, the days prior to important Federal
anncuncements are commonly thought of as days with higher than
usual uricertainty, during which interest rate volatility as well as
equity return volatility surge. Important political events, such as the
turmoil in the Gulf region, and significant economic events, such as
the defaults of Russia and Argentina on their debts, are also associ-
ated with a spike in global volatility. Time-varying volatility may also
be generated by regular, predictable events. For example, volatility in
the Federal funds market increases dramatically on the last days of
the reserve maintenance period for banks as well as at quarter-end in
response to balance sheet window dressing.” Stochastic volatility is clearly
a candidate explanation for fat tails, especially if the econometrician
fails to use relevant information that generates excess volatility*

j
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2.1.5 Effects of volatility changes

How does time-varying volatility affect our distributional assumptions,
the validity of the normal distribution model and our ability to pro-
vide a useful risk measurement system? To illustrate the problem and .
its potential solution;, consider an illustrative example. Suppose inter-
est rate changes do not fit the normal distribution model with a mean ;
of zero and a standard deviation of 7.3 basis points per day. Instead,
the true conditional distribution of interest rate changes is normal with
a mean of zero but with a time-varying volatility that during some
periods is 5bp/day and during other periods is 15bp/day.

This type of distribution is often called a “regime-switching volatil-
ity model.” The regime switches from low volatility to high volatility.
but is never in between. Assume further that market participants are
aware of the state of the economy, i.e., whether volatility is high or low.
The econometrician, on the other hand, does not have this knowledge.
When he examines the data, oblivious to the true regime-switching
distribution, he estimares an unconditional volatility of 7.3bp/day
that is the result of the mixture of the high volatility and low volatil-
ity regimes. Fat tails appear only in the unconditional distribution.
The conditional distribution is always normal, albeit with & varying
volatility.’

Figure 2.3 provides a schematic of the path of interest rate volat-
ility in our regime-switching example. The solid line depicts the true
volatility, switching between 5bp/day and 15bp/day. The econome-
trician observes periods where interest rates change by as much as,
say, 30 basis points. A change in interest rates of 30bp corresponds
to a change of more than four standard deviations given that the
estimated standard deviation is 7.3bp. According to the normal
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Figure 2.3 A schematic of actual and estimated volatility
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;
Table 2.1 Tail event probability and odds under normality
No. of deviations Z Prob(X < z) (in %) Odds (one in . . . days)
-1.50 6.68072 15
~2.00 2.27501 44
~2.50 0.62097 161
-3.00 0.13500 741
~3.50 0.02327 4,298
-4.00 0.00317 31,560
-4.50 0.00034 294,048
-5.00 0.00003 3,483,046

distribution benchmark, a change of four standard deviations or more
should be observed very infrequently. More precisely, the probability
that a truly random normal variable will deviate from the mean by
four standard deviations or more is 0.003 percent. Putting it differ-
ently, the odds of seeing such a change are one in 31,560, or once in
121 years. Table 2.1 provides the number of standard deviations, the
probability of seeing a random normal being less than or equal to this
number of standard deviations, in percentage terms, and the odds of
seeing such an event.

The risk manager may be puzzled by the empirical cbservation of
a relatively high frequency of four or more standard deviation moves.
His risk model, one could argue, based on an unconditional normal
distribution with a standard deviation of 7.3bp, is of little use, since
it under-predicts the odds of a 30bp move. In reality (in the reality of
our illustrative example), the change of 3Cbp occurred, most likely,
on a high volatility day. On a high volatility day a 30bp move is only
a two standard deviation move, since interest rate changes are drawn
from a normal distribution with a standard deviation of 15bp/day. The
probability of a change in interest rates of two standard deviations
or more, equivalent to a change of 30bp or more on high volatility
days, is still low, but is economically meaningful. In particular, the
probability of a 30bp move conditional on a high volatility day is
2.27 percent, and the odds are one in 44.

The dotted line in figure 2.3 depicts the estimated volatility using a
volatility estimation model based on historical data. This is the typ-
ical picture for common risk measurement engines ~ the estimated
volatility trails true volatility. Estimated volatility rises after having
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observed an increase, and dedines having observed a decrease. The
estimation error and estimation lag is a central issue in risk measure-
ment, as we shall see in this chapter.

This last example illustrates the challenge of modern dynamic risk
measurement. The most important task of the risk manager is to raise
a “red flag,” a warning signal that volatility is expected to be high in
the near future. The resulting action given this information may vary
from one firm to another, as a function of strategy, culture, appetite
for risk, and so on, and could be a matter of great debate. The import-
ance of the risk estimate as an input to the decision making process
is, however, not a matter of any debate. The effort to improve risk
measurement engines’ dynamic prediction of risk based on market
conditions is our focus throughout the rest of the chapter.

This last illustrative example is an extreme case of stochastic volatil-
ity, where volatility jumps from high to low and back periodically. This
model is in fact quite popular in the macroeconomics literature, and
more recently in finance as well. It is commonly known as regime
switching.®

2.1.6  Can (conditional) normality be salvaged?

In the last example, we shifted our concept of normality. Instead of
assuming asset retumns are normally distributed, we now assume
that asset returns are conditionally normally distributed. Conditional
normality, with a time-varying volatility, is an economically reason-
able description of the nature of asset return distributions, and may
resolve the issue of fat rails observed in unconditional distributions.

This is the focus of the remainder of this chapter. To preview the
discussion that followss, however, it is worthwhile to forewarn the reader
that the effort is going to be, to an extent, incomplete, Asset returns
are generally non-normal, both unconditionally as well as con-
ditionally; i.e., fat tails are exhibited in asset returns regardless of the
estimation method we apply. While the use of dynamic risk mea-
surement models capable of adapting model parameters as a function
of changing market conditions is important, these models do not
eliminate all deviations from the normal distribution benchmark.
Asset returns keep exhibiting asyrmmetries and unexpectedly large move-
ments regardless of the sophistication of estimation models. Putting
it more simply — large moves will always occur “out of the blue” (e.g.,
in relatively low volatility periods).
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One way to examine conditionai fat tails is by normalizing asset
returns. The process of normalizations of a random normal variable
' is simple. Consider X, a random normal variable, with a mean of p
and a standard deviation o,

X ~ N, 6?).

A standardized version of X is
(X — /o ~ NQO, 1}.

That is, given the mean and the standard deviation, the random vari-
: able X less its mean, divided by its standard deviation, is distributed
3 according to the standard normal distribution.

Consider now a series of interest rate changes, where the mean is
assumned, for simplicity, to be always zero, and the volatility is re-
f estimated every period. Denote this volatility estimate by ¢, This
is the forecast for next period’s volatility based on some volatility
¢stimation model ‘{see the detailed discussion in the next section).
Under the normality assumption, interest rate changes are now
conditionally normal

Al ., ~ N(O, 62).

We can standardize the distribution of interest rate changes dynam-
ically using our estimated conditional volatility ¢,, and the actual
change in interest rate that followed A/, . We create a series of
standardized variables.

Ai, 10, ~ N{O. 1).

This series should be distributed according to the standard normal dis-
tribution. To check this, we can go back through the data, and with
the benefit of hindsight put all pieces of data, drawn under the null
assumption of conditional normality from a normal distribution with
time-varying volatilities, on equal footing. If interest rate changes are,
indeed, conditionally normal with a time-varying volatiity, then the
uncenditional distribution of interest rate changes can be fat tailed.
However, the distribution of interest rate changes standardized by their
respective conditional volatilities should be distributed as a standard
normal variable,
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Figure 2.4 Standardized interest rate changes ~ empirical distribution
relative ro the N(0, 1) benchmark

Figure 2.4 does precisely this. Using historical data we estimate con-
ditional volatility.” We plot a histogram similar to the one in figure 2.2,
with one exception. The X-axis here is not in terms of interest rate
changes, but, instead, in terms of standardized interest rate changes. All
periods are now adjusted to be comparable, and we may expect to see
a “well-behaved” standard normal. Standardized interest rate changes
are going to be well behaved on two conditions: (i) that interest rate
changes are, indeed, conditionally normal; and (ii) that we accurately
estimated conditional volatility, i.e., that we were able to devise a “good”
dyramic volatility estimation mechanism. This joint condition c¢an be
formalized into a statistical hypothesis that can be tested.

Normalized interest rate changes, plotted in figure 2.4, provide an
informal test. First note that we are not interested in testing for
normality per se, since we are not interested in the entire distribution.
We only care about our ability to capture tail behavior in asset returns
— the key to dynamic risk measurement. Casual examination of fig-
ure 2.5, where the picture focuses on the tails of the conditional dis-
tribution, vividly shows the failure of the conditional normality model
to describe the data. Extreme movements of standardized interest rate
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Figure 2.5 Tail standardized interest rate changes
é movements — deviating from the conditional normality model - are

still present in the data. Recall, though, that this is a tailure of the
_ joint model - conditional normality and the method for dynamic esti-
; mation of the conditional volatility.® In principle it is still possible that
: an alternative model of volatility dynamics will be able to capture the
conditional distribution of asset returns better and that the conditional
returns based on the alternative model will indeed be normal.

2.1.7 Normality cannot be salvaged

The result apparent in figure 2.5 holds true, however, to a varying
degree, for most financial data series. Sharp movements in asset
returns, even on a normalized basis, occur in financial data series no

g matter how we manipulate the data to estimate volatility. Conditional
asset returns exhibit sharp movements, asymmetries, and other
? difficult-to-model effects in the distribution. This is, in a nutshell, the

problem with all extant risk measurement engines. All VaR-based
systerns tend to encounter difficulty where we need them to perform
best — at the tails. Similar effects are also present for the multivariate
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distribution of portfolios of assets — correlations as well tend to be
unstable - hence making VaR engines often too conservative at the
worst possible times.

This is a striking result with critical implications for the practice of
risk management. The relative prevalence of extreme moves, even after
adjusting for current marke: conditions, is the reason we need addi-
tional tools, over and above the standard VaR risk measurement tool.
Specifically, the need for stress testing and scenario analysis is related directly
to the failure of VaR-based systems.

Nevertheless, the study of conditional distributions is important.
There is still important information in current market conditions, e.g.,
conditional volatility, that can be exploited in the process of risk
assessment. In this chapter we elaborate on risk measurement and VaR
methods. In the next chapter we augment our set of tools discussing
stress testing and scenario analysis.

2.2 VaR ESTIMATION APPROACHES

There are numerous ways to approach the modeling of asset return
distribution in general, and of tail behavior (e.g., risk measurement)
in particular. The approaches to estimating VaR can be broadly
divided as follows

» Historical-based approaches. The coramon attribute to all the
approaches within this class is their use of historical time series data
in order to determine the shape of the conditional distribution.

- Parametric approach. The parametric approach imposes a specific
distributional assumption on conditional asset refurns. A
representative member of this class of models is the conditional
(log) normal case with time-varying volatility, where volatility
is estimated from recent past data.

~  Nonparametric approach. This approach uses historical data
directly, without imposing a specific set of distributional
assumptions. Historical simulation is the simplest and most
prominent representative of this class of models.

—  Hybrid approach. A combined approach.

o Implied volatility based approach. This approach uses derivative pric-
ing models and current derivative prices in order to impute an
implied volatility without having to resort to historical data. The
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use of implied volatility obtained from the Black-Scholes option
pricing model as a predictor of future volatility is the most promin-
ent representative of this class of models.

2.2.1  Cyclical volatility

Volatility in financial markets is not only time-varying, but also
sticky, or predictable. As far back as 1963, Mandelbrot wrote

large changes tend to be followed by large changes — of either sign —
and small changes by small changes. (Mandelbrot 1963)

This is a very useful guide to modeling asset return volatility, and hence
risk. It turns out to be a salient feature of most extant models that
use historical data. The implication is simple - since the magnitude
(but not the sign) of recent changes is informative, the most recent
history of returns on a financial asset should be most informative with
respect to its volatility in the near future. This intuition is implemented
in many simple models by placing more weight on recent historical
data, and little or no weight on data rthat is in the more distant past.

2.2.2 Historical standard deviation

Historical standard deviation is the simplest and most common way
‘ to estimate or predict future volatility. Given a history of an asset’s
‘* continuously compounded rate of returns we take a specific window
: of the K most recent returns. The data in hand are, hence, limited by
choice 1o be 7y, T1ars - Trogr-xer- LHis retUIn series is used in order
to calculate the current/conditional standard deviation o,, defined as ;
the square root of the conditional variance i

2

2 _ 2 . 2 .
OF = (Toggr” oot Teog” + 1o K

This is the most familiar formula for calculating the variance of a
random variable - simply calculating its “mean squared deviation..” Note
that we make an explicit assumption here, that the conditional mean
is zero. This is censistent with the random walk assumption.

The standard formula for standard deviation” uses a slightly different
formula, first derneaning the range of data given to it for calculation.
The estimation is, hence, instead
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B = { Tiokaeker & oo o Ty + rr«l,r)/K’/

Of = ((Fegimkel — B)? = (P HO2 o+ (o = B DK = 1)

Note here that the standard deviation is the mean of the squared
deviation, but the mean is taken by dividing by (K — 1) rather than
K. This is & result of a statistical consideration related to the loss
of one degree of freedom because the conditional mean, y,, has been
estimated in a prior stage. The use of K- 1 in the denominator guar-
antees that the estirnator 67 is unbiased.

This is a minor variation that makes very little practical difference
in most instances. However, it is worthwhile discussing the pros and
cons of each of these two methods. Estimating the conditional mean
u, from the most recent K days of data is risky. Suppose, for example,
that we need to estimate the volatility of the stock market, and we
decide to use a window of the most recent 100 trading days. Suppose
further that over the past 100 days the market has declined by 25 per-
cent. This can be represented as an average decline of Z5bp/day
(-2,500bp/100days = --25bp/day). Recall that the econoretrician
is trying to estimate the conditional mean and volatility that were
known to market participants during the period. Using ~25bp/day as
1., the conditional mean, and then estimating ¢, implicitly assumes
that market participants knew of the decline, and that their conditional
distribution was centered around minus 25bp/day.

Since we believe that the decline was entirely unpredictable,
imposing our priors by using p,= 0 is a logical alternative. Another
approach is to use the unconditional mean, or an expected change
based on some other theory as the conditional mean parameter. In
the case of equities, for instance, we may want to use the uncondi-
tional average return on equities using a longer period - for example
12 percent per annum, which is the sum of the average risk [ree rate
(approximately 6 percent) plus the average equity risk premium (6
percent). This translates inte an average daily increase in equity prices
of approximately 4.5bp/day. This is a relatively small number that tends
to make little difference in application, but has a sound economic
ratioriale underlying its use.

For other assets we may want to use the forward rate as the estimate
for the expected average change. Currencies, for instance, are expected
to drift to equal their forward rate according to the expectations hypo-
thesis. If the USD is traded at a forward premium of 2.5 percent p.a.
relative to the Euro, a reasonable candidate for the mean parameter

Reproduced from Understanding Market, Credlt, and Operational Risk. The Value at Risk Approach, oy
Linda Allen, Jacob Boudoukh, and Anthony Saunders. Copyright © 2004 by Linda Allen, Jacob Boudoukh,
and Anhony Saunders. All rights reserved. Reproduced with permission of Blackwell Publishing Ltd.

Distributed by:

(VGARP




Reproduced from Understanding Market, Credlit and Operational Risk: The Value at Risk Approact, by
- Linda Allen, Jacob Boudoukh, and Anthony Saunders. Copyright © 2004 by Linda Allen, Jacob Boudoukh,
i and Anthony Saunders. All rights reserved. Reproduced with permission of Blackwell Publishing Ltd.

38 IJNDERSTANDING MARKET, CREDIT, AND OPERATIONAL RISK

would be u, = Ibp/day. The difference here between Obp and lbp
seems to be immaterial, but when VaR is estimated for longer horizens
this will become a relevant consideration, as we discuss later.

2.2.3 Implementation considerations

The empirical performance of historical standard deviation as a
predictor of future volatility is affected by statistical error. With
respect to statistical error, it is always the case in statistics that “more
is better”. Hence, the more data available to us, the more precise our
estimator will be to the true return volatility. On the other hand, we
estimate standard deviation in an environment where we believe, a
priori, that volatility itself is unstable. The stickiness of time variations
in volatility are important, since it gives us an intuitive guide that recent
history is more relevan: for the near future than distant history.

In figure 2.6 we use the series of 2,500 interest rate changes in
order to come up with a series of rolling estimates of conditional
volatility. We use an estimation window K of different lengths in order
to demonstrate the tradeoff involved. Specifically, three different
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Figure 2.6 Time-varying volatility using historical standard deviation with
various window lengths
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window-lengths are used: X = 30, K = 60, and K= 150. On any given
day we compare these three lookback windows. That is, on any given
day (starting with the 151st day), we look back 30, 60, or 150 days
and calculate the standard deviation by averaging the squared inter-
est rate changes (and then taking a square root). The figure demon-
strates the issues involved in the choice of K. First note that the forecasts
for series using shorter windows are more velatile. This could be the
result of a statistical error — 30 observations, for example, may pro-
vide only a noisy estimate of volatility. On the other hand, variations
could be the result of true changes in volatility. The longer window
length, K == 150 days, provides a relatively smoother series of estim-
ators/forecasts, varying within a tighter range of 4-12 basis points
per day. Recall that the unconditional volatility is 7.3bp/day. Shorter
window lengths provide exireme estimators, as high as 22bp/day. Such
estimators are three times larger than the uncenditional volatility.

The effect of the statistical estimation error is particularly acute
for small samples, e.g., K = 30. The STDEV estirnator is particularly
sensitive to extreme observations. To see why this is the case, recall
that the calculation of STDEV involves an equally weighted average
of squared deviations from the mean (here zero). Any extreme, per-
haps non-normal, observation becemes larger in magnitude by taking
it to the power of two. Moreover, with small window sizes each
observation receives higher weight by definition. When a large
positive or negative return is observed, therefore, a sharp increase in
the volatility forecast is observed.

In this context it is worthwhile mentioning that an alternative pro-
cedure of calculating the volatility involves averaging absolute values
of returns, rather than squared returns. This method is considered more
robust when the distribution is non-normal. In fact it is possible 1o
show that while under the normality assumption STDEV is optimal,
when returns are non-normal, and, in particular, fat tailed, then the
absolute squared deviation method may provide a superior forecast.

This discussion seems to present an argument that longer observa-
tion windows reduce statistical error. However, the other side of the
coin is that small window lengths provide an estimator that is more
adaptable to changing market conditions. In the extreme case where
volatility does not vary at all, the longer the window length is; the
more accurate nur estimates. However, in a time varying volatility envir-
onunent we face a tradeoff - short window lengths are less precise,
due to estimation error, but more adaptable to innovations in volatil-
ity. Later in this chapter (in Section 2.2.4.2) we discuss the issue
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of benchmarking various volatility estimation models and describe
simple optimization procedures that allow us to choose the most
appropriate window length. Intuitively, for volatility series that are in
and of themselves more volatile, we will tend to shorten the window
length, and vice versa.

Finally, yet another important shortcoming of the STDEV method
for estimating conditional volatility is the periodic appearance of large
decreases in conditional volatility. These sharp declines are the result
of extreme observations disappearing from the rolling estimation
window. The STDEV methodology is such that when a large move
occurs we use this piece of data for K days. Then, on day K+ 1 it falls
off the estimation window. The extreme return carries the same
weight of (100/K) percent from day ¢ - 1 to day 1 - K, and then dis-
appears. From an economic perspective this is a counterintuitive way
to describe memory in financial markets. A more intuitive description
would be to incorporate a gradual decline in memory such that when
a crisis occurs it is very relevant for the first week, affecting volatility
in financial markets to a great extent, and then as time goes by it
becomes gradually less important. Using STDEV with equal weights
on observations from the most recent K days, and zero thereafter (far-
ther into the past) is counterintuitive. This shortcoming of STDEV is
precisely the one addressed by the exponential smoothing approach,
adopted by RiskMetrics™ in estimating volatility.

2.2.4 Exponential smoothing — RiskMetrics™ volatility

Suppose we want to use historical data, specifically, squared returns,
in order to calculate conditional volatility. How can we improve upon
our first estimate, STDEV? We focus on the issue of information decay
and on giving more weight to more recent information and less
weight to distant information. The simplest, most popular, approach
is exponential smoothing. Exponential smoothing places exponentially
declining weights on historical data, starting with an initial weight,
and then declining to zero as we go further into the past.

The smoothness is achieved by setting a parameter A, which is equal
to a number greater than zero, but smaller than one, raised to a power
(i.e., 0 < A < 1}. Any such smoothing parameter A, when raised to a
high enough power, can get arbitrarily small, The sequence of num-
bers A°, &', A% ... & ... has the desirable property that it starts with
a finite number, namely A° (= 1), and ends with a number that could
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become arbitrarily small (A" where i is large). The only problem with
this sequence is that we need it to sum to 1 in order for it to be a
weighting scheme. .

[n order to rectify the problem, note that the sequence is geo-
metric, summing up to 1/(1 = A). For a smoothing parameter of 0.9 for
example, the sum of 0.9° 0.9, 0.9%, ...0.9, .. .is /(1 = 0.9) = 10. All
we nieed is to define a new sequence which is the old sequence divided
by the sum of the sequence and the new sequence will then sum 1o
1. In the previous example we would divide the sequence by 10. More
generally we divide each of the weights by 1/(1 — &), the sum of the
geometric sequence. Note that dividing by 1/(1 ~ A) is equivalent to
multiplying by (1 - A). Hence, the old sequence A% A, A% .. A, ...
is replaced by the new sequence

(1 =A% (1 = MAL (1 =M)A., (1 -0\, ...

This is a “legitimate” weighting scheme, since by construction it sums
to one. This is the approach known as the RiskMetrics™ exponential
weighting approach to volatility estimation.

The estimator we obtain for conditional variance is:

] 0, 2 . ..
o7 = (1 = MN*(A'r ° + Mg+ Mrg, b+t AT en)

where N is some finite number which is the truncation point. Since
we rruncate after a finite number (N) of observations the sum of the
series is not 1. Tt is, in fact, A% That is, the sequence of the weights
we drop, from the “N + 1"th observation and thereafter, sum up to
AY/ (1 = A). For example, take A = 0.94:

Weight 1 (1 —MA° = (1 - 0.94) = 6 00%
Weight 2 (1 -l = (1 = 0.94)*0.94 = 5.64%
Weight 3 (1-20A\ = (1 — 0.94)*0.942 =5.30%
Weight 4 (1 =2 = (1 — 0.94)*0.94° = 4.98%
Weight 100 {1 = A" = (1 - 0.94)*0.94" =0.012%

The residual sumn of truncated weights is 0.94'/(1 - 0.94) = 0.034.
We have two choices with respect to this residual weight

1 We can increase N so that the sum of residual weight is small (e.g.,
0.94%%/(1 - 0.94) = 0.00007};
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Figure 2.7 STDEV and exponential smoothing weighting schemes

2 or divide by the truncated sum of weights (1 - AN (T - A) rather
than the infinite sum 1/(1 = A). In our previous example this would
mean dividing by 16.63 instead of 16.66 after 100 observations.

This is a purely technical issue. Either is technically fine, and of little
real consequence to the estimated volatility.

In figure 2.7 we compare RiskMetrics™ to STDEV. Recall the
important commonalities of these rmethods

*

both methods are parametric;

e both methods attempt to estimate conditional volatility;

« both methods use recent historical data;

o both methods apply a set of weights to past squared returns.

The methods differ only as {ar as the weighting scheme is concerrned.
RiskMetrics™ poses a choice with respect to the smoothing parameter
A, (in the example above, equal to 0.94) similar to the choice with
respect to K in the context of the STDEV estimator. The tradeoif in
the case of STDEV was between the desire for a higher predision, con-
sistent with higher K's, and quick adaptability to changes in conditional
volatility. consistent with lower K's. Here, similarly, a A parameter closer
o unity exhibits a slower decay in information’s relevance with less
weight on recent observations (see the dashed-dotted line in figure
2.7), while lower A parameters provide a weighting scheme with more
weight on recent observations, but effectively a smaller sample (see
the dashed line in figure 2.7).
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Figure 2.8 RiskMetrics™ volatilities

higher A. A higher A not only means more weight on recent obser-
vations, it also means that our current beliefs have not changed
dramatically from what we believed to be true yesterday.

2.24.3 The empirical performance of KiskMetrics™

The intuitive appeal of exponential smoothing is validated in
empirical tests. For a relatively large portion of the reasonable range
for lambdas (most of the estimators fall above 0.90), we observe little
visible difference between various volatility estimators. In figure 2.8
we sce a seres of rolling volatilities with two different smoothing
parameters, 0.90 and 0.96. The two series are close to being super-
imposed on one another. There are extreme spikes using the lower
lambda parameter, 0.9, but the choppiness of the forecasts in the back
end that we observed with STDEV is now completely gone. '’

2244 GARCH

The exponential smoothing method recently gained an important
extension in the form of a new time series model for volatility. In a
sequence of recent academic papers Robert Engel and Tim Bollereslev
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introduced a new estimation methodology called GARCH, standing for
General Autoregressive Conditional Heteroskedasticity. This sequence
of relatively sophisticated-sounding technical terms essentially means
that GARCH is a statistical time series model that enables the eco-
nemetrician to model volatility as time varying and predictable. The
model is sirnilar in spirit to RiskMetrics™. In a GARCH(1.1) model
the period t conditional volatility is a function of period ¢ -1 condi-
tional volatility and the return from ¢ - 1 to ¢ squared,

Gl=a+ br_ }+ 0, %

where a, b, and ¢ are parameters that need to be estimated empiric-
ally. The general version of GARCH, called GARCH(p.q). is

2 2 . 2 2
cl=a+br_ f4bri .+t by et iop

+ 0+ GOt .t 0,

allowing for p lagged terms on past returns squared, and g lagged terms
on past volatility.

with the growing popularity of GARCH it is worth pointing out
the similarities between GARCH and other methods, as well as the
possible pitfalls in using GARCH. First note that GARCH(1,1}) is a
generalized case of RiskMetrics™. Put differently, RiskMetrics™ is a
restricted case of GARCH. To see this, consider the following two con-
straints on the parameters of the GARCH(1,1) process:

a=0, b+ic=1.

Substituting these two restrictions into the general form of
GARCH(1,1) we can rewrite the GARCH model as follows

2 2 2
gf=(l —cyr . + 0. "

This is identical to the recursive version of RiskMetrics™.

The two parameter restrictions or consiraints that we need to impose
on GARCH(1,1} in order to get the RiskMetrics™ exponential smooth-
ing pararmeter imply that GARCH is more peneral or less restrictive.
Thus, for a given dataset, GARCH should have better explanatory power
than the RiskMetrics™ approach. Since GARCH offers more degrees
of freedom, it will have lower error or better describe a given set of
data. The problem is that this may not constitute a real advantage in
practical applications of GARCH to risk management-related situations.
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In reality, we do not have the full benefit of hindsight. The challenge
in reality is to predict volatility out-of-sample, not in-sample. Within
sample there is no question that GARCH would perform better, simply
because it is more flexible and general. The application of GARCH to
risk management requires, however, forecasting ability.

The danger in using GARCH is that estimation error would generate
noise that would harm the out-of-sample forecasting power. To see
this consider what the econometrician interested in volatility forecasting
needs to do as time progresses. As new information arrives the eco-
nometrician updates the parameters of the model to fit the new data.
Estirnating parameters repeatedly creates variations in the model itself,
some of which are true to the change in the eccnomic environment, and
some simply due to sampling variation. The econometrician runs the
risk of providing less accurate estirnates using GARCH relative to the
simpler RiskMetrics™ model in spite of the fact that RiskMetrics™ is
a constrained version of GARCH. This is because while the RiskMetrics™
methodology has just one fixed model - a lambda parameter that is
a constant (say 0.94) — GARCH is chasing a moving target. As the
GARCH parameters change, forecasts change with it, partly due to true
varations in the model and the state variables, and partly due to changes
in the model due to estimation error. This can create model risk.

Figure 2.9 illustrates this risk empirically. In this figure we see a rolling
series of GARCH forecasts, re-estimated daily using a moving window
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Figure 2.9 GARCH in- and out-of-sample
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of 150 observations, The extreme variations in this series relative to
a relatively smooth RiskMetrics™ volatility forecast series, that appears {
on the same graph, demonstrates the risk in using GARCH for fore- «
casting volatility, using a short rolling window."

2.2.5 Nonparametric volatility forecasting

2.2.5.1 Historical simulation

So far we have confined our attention to parametric volatility estimation
methods. With parametric models we use all available data, weighted
one way or another, in order to estimate parameters of a given dis-
tribution. Given a set of relevant parameters we can then determine
percentiles of the distribution easily, and hence estimate the VaR of :
the return on an asset or a set of assets. Nonparametric methods z
estimate VaR, i.e., percentile of return distribution, directly from the 5
data, without making assumptions about the entire distribution of
returns. This is a potentially promising avenue given the phenomena
we encountered so far - fat tails, skewrness and so forth.

The most preminent and easiest to implernent methodology within
the class of nonparametric methods is historical simulation (HS). H5>
uses the data directly. The only thing we need to determine up front
is the lookback window. Once the window length is determined, we é
order returns in descending order, and go directly to the tail of this
ordered vector. For an estimation window of 100 observations, for ex-
ample, the fifth lowest return in a rolling window of the most recent
100 returns is the fifth percentile. The lowest observation is the first
percentile. If we wanted, instead, to use a 250 observations window,
the fifth percentile would be somewhere between the 12th and the
13th lowest observations (a detailed discussion follows). and the first |
percentile would be somewhere between the second and third low-
est returns.

This is obviously a very simple and convenient method, requiring
the estimation of zero parameters (window size aside). HS can, in
theory. accommodate fat tails skewness and many other peculiar
properties of return series. If the “true” return distribution is fat
tailed, this will come through in the HS estimate since the fifth obser-
vation will be more extrerne than what is warranted by the normal
distribution. Moreover, if the “true” distribution of asset returns is left
skewed since market falls are more extreme than market rises, this
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will surface through the fact that the 5th and the 95th ordered obser- :
vations will not be symmetric around zero.

This is all true in theory. With an infinite amount of data we have
no difficulty estimating percentiles of the distribution directly.
Suppose, for example, that assel returns are truly non-normal, and
the correct model involves skewness. If we assume normality we also
assume symmetry, and in spite of the fact that we have an infinite
amount of data we suffer from model specificaticn error — a problem
which is insurmountable. With the HS method we could take, say,
the 5,000th of 100,000 observations, a very precise estimate of the
fifth percentile. 5

In reality, however, we do not have an infinite amount of data. What
is the result of having to use a relatively small sample in praclice?
Quantifving the precision of percentile estimates using HS in finite
samples is a rather complicated technical issue. The intuition is,
however, straightforward. Percentiles around the median (the 50th
percentile) are easy to estimate relatively accurately even in small
~, samples. This is because every observation contributes to the estima-
%' tion by the very fact that it is under or over the median.

Estimating extreme percentiles, such as the first or the fifth percentile,
is much less precise in small samples. Consider, for example, estimating
the fifth percentile in a window of 100 observations. The fifth per-
centile is the fifth smallest observation. Suppose that a crisis occurs
f and during the following ten trading days five new extreme declines
were observed. The VaR using the HS method grows sharply. Suppose
now that in the following few months no new extreme declines
occurred. From an economic standpoint this is news — “no news is
good news” is a good description here. The HS estimator of the VaR,
on the other hand, reflects the same extreme tail for the following
few months, until the observations fall out of the 100 day observa-
tion window. There is no updating for 90 days, starting from the ten
extreme days (where the five extremes were experienced) until the
ten extreme days start dropping out of the sample. This problem can
becorne even more acute with a window of one year (250 observa-
tions) and a | percent VaR, that requires only the second and third
lowest observations.

This problem arises because HS uses data very inefficiently. That is,
out of a very small initial sample, focus on the tails requires throwing
away a lot of useful information. Recall that the opposite holds true
for the parametric family of methods. When the stanidard deviation
is estimared, every data point contributes to the estimation. When
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extremes are observed we update the estimator upwards, and when calm
periods bring into the sample relatively small returns (in absolute value),
we reduce the volatility forecast. This is an important advantage of
the parametric method(s) over nonparametric methods ~ data are used
more efficiently. Nonparametric methods’ precision hinges on large
samples, and falls apart in small samples.

' A minor technical point related to HS is in place here. With 100
{ observations the first percentile could be thought of as the first obser-
vation. However, the observation itself can be thought of as a random
event with a probability mass centered where the observation is
actually observed, but with 50 percent of the weight to its left and
50 percent to its right. As such, the probability mass we accumulate

going from minus infinity to the lowest of 100 observations is only
; /2 percent and not the full 1 percent. According to this argument the
first percentile is somewhere in between the lowest and second low-

est observation. Figure 2.10 clarifies the point.
Finally. it might be argued that we can increase the precision of HS
estimates by using more data; say, 10,000 past daily observations. The
issue here is one of regime relevance. Consider, for example, foreign
é’ exchange rates going back 10,000 trading days — approximately 40 years.
Over the last 40 years, there have been a number of different
exchange rate regimes in place, such as fixed exchange rates under
Bretton Woods. Data on returns during pericds of fixed exchange rates
would have no relevance in forecasting volatility under floating
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exchange rate regimes. As a result, the sk manager using con-
ventional HS is often forced to rely on the relatively short time period
relevant to current market conditions, thereby reducing the usable
number of observations for HS estimation.

2.2.5.2  Multivariate density estimation

Multivariate density estimation (MDE) is a methodology used to esti-
mate the joint probability density function of a set of variables. For
example, one could choose to estimate the joint density of returns and
a set of predetermined factors such as the slope of the term structure,
the inflaticn level, the state of the economy, and so forth. From this
distribution, the conditional moments, such as the mean and volatil-
: ity of returns, conditional on the economic state, can be calculated.

The MDE volatility estimate provides an intuitive alternative to the
standard set of approaches to weighting past (squared) changes in deter-
mining volatility forecasts. The key feature of MDE is that the weights
are no longer a constant function of time as in RiskMetrics™ or STDEV.
Instead, the weights in MDE depend on how the current state of the
world compares to past states of the world. If the current state of the
world, as measured by the state vector x,, is similar to a particular point
in the past, then this past squared return is given a lot of weight in
forming the volatility forecast, regardless of how far back in time it is.

For example, suppose that the econometrician attempts to estimate
the volatility of interest rates. Suppose further that according to his
model the volatility of interest rates is determined by the level of rates
~ higher rates imply higher volatility. If today’s rate is, say 6 percent,
then the relevant history is any point in the past when interest rates
were around 6 percent. A statistical estimate of current volatility that
uses past data should place high weight on the magnitude of interest
rate changes during such times. Less important, although relevant, are
tirnes when interest rates were around 5.5 percent or 6.5 percent, even
less important although not totally irrelevant are times when interest
rates were 5 percent or 7 percent, and so on. MDE devises a weight-
ing scheme that helps the econometrician decide how far the relev-
ant state variable was at any point in the past from its value today.
; Note that to the extent that relevant state variables are going to
% be aurocorrelated, MDE weights may leok, to an extent, similar to
RiskMetrics™ weights,

The critical difficulty is to select the relevant (economic) state vari-
ables for volatility These variables should be useful in describing the
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economic environment in general, and Dbe related to wvolatility
specifically. For example, suppose that the level of inflation is related
to the level of return volatility, then inflation will be a good con-
ditioning variable. The advantages of the MDE estimate are that it can
be interpreted in the context of weighted lagged returns, and that the
functional form of the weights depends on the true (albeit estimated)
distribution of the relevant variables.
Using the MDE method, the estimate of conditional volatility is

R N . 2
OF = Bjupn .k OX) T

Eere, x,_; is the vector of variables describing the economic state at
time ¢t — i (c.g., the term structure), determining the appropriate
weight @(x,;) to be placed on observation I — i. as a function of the
“distance” of the state x,_; from the carrent state x,. The relative weight
of “near” relative to “disrant” observations from the current state is
measured via the kernel function.'?

MDE is extremely flexible in allowing us to introduce dependence
on state variables. For example, we may choose to incude past
squared returns as conditioning variables. In doing so the volatility
forecasts will depend nonlinearly on these past changes. For example,
the exponentially smoothed volatility estimate can be added to an array
of relevant conditioning variables. This may he an important extension
10 the GARCH dass of models. Of particular note, the estimated
volatility is still based directly on past squared returns and thus falls
into the class of models that places weights on past squared returns.

The added flexibility becomes crucial when one considers cases
in which there are other relevant state variables that can be added
1o the current state. For example, it is possible to capture: (i) the
dependence of interest rate volatility on the level of interest rates,
? (ii) the dependence of equity volatility on current implied volatilities;
| and (iii) the dependence of exchange rate volatility on interest rate
spreads, proximity to interventicn bands, etc.

There are potential costs in using MDE. We must choose a weight-
ing scheme (a kernel function), a set of conditioning variables, and
the number of observations to be used in estimating volatility. For our
purposes, the bandwidth and kernel function are chosen objectively
(using standard criteria). Though they may not be optimal choices, it
is important to avoid prablems associated with data snooping and over-
fitting. While the choice of conditioning variables is at our discretion
and subject to abuse, the methodology does provide a considerable
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Figure 2.11 MDE weights on past returns squared
1 advantage. Theoretical models and existing empirical evidence may

suggest relevant determinants for volatility estimation, which MDE can
incorporate directly. These variables can be intreduced in a straight-
forward way for the class of stochastic volatility models we discuss.

The most serious problem with MDE is that it is data intensive. Many
data are required in order to estimate the appropriate weights that cap-
ture the joint density function of the variables. The quantity of data
] that is needed increases rapidly with the number of conditioning vari-
ables used in estimasion. On the other hand, for many of the relevant
markets this concera is somewhat alleviated since the relevant state
can be adequately described by a relatively low dimensional system
of factors.'?

As an illustration of the four methodologies put together, figure 2.11
shows the weights on past squared interest rate changes as of a
specific date estimated by each model. The weights for STDEV and
RiskMetrics™ are the same in every period, and will vary only with
the window length and the smoothing parameter. The GARCH(L,1)
weighting scheme varies with the parameters, which are re-estimated
every period, given each day’s previous 150-day history. The date was
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selected at random. For that particular day, the GARCH parameter
selected is b = 0.74. Given that this parameter is relatively low, it is
not surprising that the weights decay relatively quickly Figure 2.11
; is particularly illuminating with respect to MDE. As with GARCH, the
weights change over time. The weights are high for dates ¢ through
t — 25 (25 days prior) and then start to decay. The state variables
chosen here for volatility are the level and the slope of the term
structure, together providing informaticn about the state of interest
rate volatility (according to osur choice). The weights decrease because
the economic environment, as described by the interest rate level and
spread, is moving further away from the conditions observed at date 1.
Flowever, we observe an increase in the weights for dates 1 - 80 to
t — 120. Economic conditions in this period (the level and spread) are
similar to those at date t. MDE puts high weight on relevant informa-
tion, regardless of how far in the past this information is. ™

2.2.6 A comparison of methods

Table 2.2 compares, on a period-by-period basis, the exient to which
the forecasts from the various models line up with realized future vol-
atility. We define realized daily volatility as the average squared daily
; changes during the following (trading) week, from day ¢ + 1 to day
¢+ 5. Recall our discussion of the mean squared error. [n order to bench-
rmark various methods we need to test their accuracy vis-a-vis
realized volatility — an unknown before and after the fact, Il we used
the realized squared return during the day following each volatility
forecast we run into estimation error problems. On the other hand

Table 2.2 A comparison of methods

STDEV RiskMetrics™ MDE GARCH
Mean 0.070 0.067 0.067 0.073
Std. Dev 0.022 0.029 0.024 0.030
AUtocorT. 0.999 0.989 0.964 0.818
MSE 0.999 0.930 0.887 1.115

Linear regression

Beta 0.577 0.666 0.786 0.559
{s.e.) (0.022) (0.029) (0.024) (0.030)
R? 0.100 0,223 0.214 0.172
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if we measure realized volatility as standard deviation during the
following month, we run the risk of inaccuracy due to over aggrega-
tion because volatility may shift over a month’s time period. The
$ tradeoff between longer and shorter horizons going forward is
similar to the tradeoff discussed in section 2.2.3 regarding the length
of the lookback window in calculating STDEV. We will use the real-
ized volatility, as measured by mean squared deviation during the five
trading days following each forecast. Interest rate changes are mean-
adjusted using the sample mean of the previous 150-day estimation
period.

The comparison between realized and forecasted volatility is done
in two ways. First, we compare the out-of-sample performance over
the entire period using the mean-squared ervor of the forecasts. That
is, we take the difference between each model’s volatility forecast
and the realized volatility, square this difference, and average through
time. This is the standard MSE formulation. We also regress realized
volatility on the forecasts and document the regression coefficients
and R’s.

The first part of table 2.2 documents some suminary statistics that
are quite illuminating. First, while all the means of the volartility
forecasts are of a similar order of magnitude (approximately seven
basis points per day), the standard deviations are quite different, with
the most volatile forecast provided by GARCH(1,1). This result is
somewhat surprising because GARCH(1,1) is supposed 1o provide a
relatively smooth volatility estimate (due to the moving average term).
However, for rolling, out-of-sample forecasting, the variability of the
parameter estimates from sample to sample induces variability in the
forecasts. These results are, however, upwardly biased, since GARCH
would commonly require much more data to yield stable parameter
estimates. Fere we re-estimate GARCH every day using a 150-day
: lookback period. From a practical perspective, this finding of unstable
* forecasts for volatility is a model disadvantage. In particular, to the
extent that such numbers serve as inputs in setting time-varying
rules in a risk management system (for example, by setting trading
limits), smoothness of these rules is necessary to avoid large swings
in positions.

Regarding the forecasting performance of the various volatility
models, table 2.2 provides the mean squared error measure (denoted
MSE). For this particular sample and window length, MDE minimizes
the MSE, with the lowest MSE of 0.887. RiskMetrics™ (using A = 0.94
as the smoothing patameter) also performs well, with an MSE of 0.930.
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Note that this comparison involves just one particular GARCH
model (i.e., GARCH(1,1)). over a short estimation window, and does
not necessarily imply anything about other specifications and
window lengths. One should investigate other window lengths and
specifications, as well as other data series, to reach general conclusions
regarding model comparisons. It is interesting to note, however, that,
nonstationarity aside, exponentially smoothed volatility is a special case
of GARCH(1.1) in sample, as discussed earlier. The results here sug-
gest, however, the potential cost of the error in estimation of the GARCH
smoothing parameters on an out-of-sample basis.

An alternative appreach to benchmarking the various volatility-
forecasting methods is via linear regression of realized volatility on the
forecast. If the conditional volatility is measured without error, then
the slope coefficient (or beta) should equal one. However, if the fore-
cast is unbiased but contains estimation error, then the coefficient will
be biased downwards. Deviations from one reflect a combination of
tais estimation error plus any systematic over- or underestimation. The
ordering in this “horse race” is quite similar 1o the previous one. In
particular, MDE exhibits the beta coefficient closest to one (0.786),
and exponentially smoothed volatility comes in second, with a beta
parameter of 0.666. The goodness of fit measure, the R? of each of
the regressions, is similar for both methods.

"5 AY L TR

2.2.7 The hybrid approach

The hybrid approach combines the two simplest approaches (for our
sarnple), HS and RiskMetrics™, by estimating the percentiles of the
return directly (similar to HS), and using exponentially declining
weights on past data (similar to RiskMetrics™). The approach starts
with ordering the returns over the observation period just like the
HS appreach. While the HS approach attributes equal weights to cach
observation in building the conditional empirical distribution, the
hybrid approach attributes exponentially declining weights to his-
torical returns. Hence, while obtaining the 1 percent VaR using 250
daily returns involves identifying the third lowest observation in the
HS approach, it may involve more or less observations in the hybrid
approach. The exact number of observations will depend on whether
the extreme low returns were observed recently or further in the past.
: The weighting scheme is similar to the one applied in the exponen-
tial smoothing (EXP hence) approach,
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The hybrid approach is implemented in three steps:

Step I: Denote by r,_,, the realized return from ¢ -1 to t. To cach
of the most recent K returns: r,_,, Ty o o0 Frog ko)
assign a weight [(1 = A)/(1 =A%), [(1 = W/(1 = A9, ..,
[(1 = W1 -~ A%} ]A%, respectively. Note that the constant
[(1 =A)/(1 =AM simply ensures that the weights sum to one.

Step 2: Order the returns in ascending order.

Step 3: In order to obtain the x percent VaR of the portfolio, start
from the lowest return and keep accumulating the weights
until x percent is reached. Linear interpolation is used
between adjacent points to achieve exactly x percent of the
distribution.

Consider the following example, we examine the VaR of a given series
at a given point in time, and a month later, assuming that no extreme
observations were realized during the month. The parameters are
A =0.98, K= 100. _

The top half of table 2.3 shows the ordered returns at the initial
date. Since we assume that over the course of a month no extreme

Table 2.3 The hybrid appreach - an example

Order Return  Periods Hybrid Hybrid cumul. HS HS cumul.
ago weight weight weight weight

Initial dare:

1 ~3.30% 3 0.0221 0.0221 0.01 0.01 *
2 ~2.90% 2 0.0226 0.0447 0.01 0.02

3 ~2.70% 65 0.0063 0.0511 0.01 0.03

j 4 -2.50% 45 0.0095 0.0605 0.01 0.04

5 -2.40% 5 0.0213 0.0818 0.01 0.05

’~f 6 -2.30% 30 0.0128 0.0947 .01 0.06

25 days later:

1 ~3.30% 28 0.0134 0.0134 0.01 0.01
2 -2.90% 27 0.0136  0.0270 0.01 0,02
3 =2.70% 90 0.0038 0.0308 0.01 0.03
4 -2.50% 70 0.0057 0.0365 0.01 0.04
5 ~2.40% 30 0.0128 0.0494 0.01 0.05
6 ~2.30% 55 0.0077 0.0571 0.01 0.06
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returns are observed, the ordered returns 25 days later are the same
These returns are, however, further in the past. The last two columns
show the equally weighted probabilities under the HS approach.
Assuming an observation window of 100 days, the HS approach
estimates the 5 percent VaR to be 2.35 percent for both cases (note
that VaR is the negative of the actual return). This is obtained using
interpolation on rthe actual historical returns. That s, recall that we
assume that half of a given return’s weight is to the right and half to
the left of the actual observation (see figure 2.10). For example, the
—2.40 percent return represents 1 percent of the distribution in the
HS approach, and we assume that this weight is split evenly between
the intervals from the actual observation to points halfway to the next
highest and lowest observations. As a result, under the HS approach,
-2.40 percent represents the 4.5th percentile, and the distribution of
weight leads to the 2.35 percent VaR (halfway between 2.40 percent
and 2.30 percent).

In contrast, the hybrid approach departs from the equally weighted
HS approach. Examining first the initial period, table 2.3 shows that
the cumulative weight of the ~2.90 percent return is 4.47 percent and
5.11 percent for the =2.70 percent return. To obtain the 5 percent VaR
for the initial period, we must interpolate as shown in figure 2.10. We
obtain a cumulative weight of 4.79 percent for the ~2.80 percent return.
Thus, the 5th percentile VaR under the hybrid approach for the ini-
tial period lies sormnewhere between 2.70 percent and 2.80 percent, We
define the required VaR level as a linearly interpolated return, where
the distance to the two adjacent cumulative weights determines the
return. In this case, for the initial period the 5 percent VaR under the
hybrid approach is;

2.80% ~ (2.80% =~ 2.70%)*[(0.05 ~ 0.0479)/(0.0511 — 0.0479)]
=2.73%.

Similarly, the hybrid approach estimate of the 5 percent VaR 25 days
later can be found by interpolating between the —2.40 percent return
(with a cumulative weight of 4.94 percent) and -2.35 percent (with
a cumulative weight of 5.33 percent, interpolated from the values on
table 2.3). Solving for the 5 percent YaR:

2.35% — (2.35% - 2.30%)*[(0.05 — 0.0494)/(0.0533— 0.0494)]
= 2.34%.
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Thus, the hybrid approach initially estimates the 5 percent VaR as
2.73 percent. As time goes by and no large returns are observed, the
vaR estimate smoothly declines to 2.34 percent. In contrast, the HS
approach yields a constant 5 percent VaR over both periods of 2.35
percent, thereby failing to incorporate the information that returns were
stable over the two month period. Determining which methodology
is appropriate requires backtesting (see Appendix 2.1).

2.3 RETURN AGGREGATION AND VaR

Our discussion of the HS and hybrid methods missed one key point
so far. How do we aggregate a number of positions into a single VaR
number for a portfolio comprised of a number of positions? The
answer to this question in the RiskMetrics™ and STDEV approaches is
simple — under the assumption that asset returns are jointly normal,
the return on a portfolio is also normally distributed. Using the vari-
ance—covariance matrix of asset returns we can calculate portfolio volat-
ility and VaR. This is the reason for the fact that the RiskMetrics™
approach is commonly termed the Variance-Covariance approach
(VarCov).

The HS approach needs one more step — missing so far from our
discussion — before we can determine the VaR of a portfolio of posi-
tions. This is the aggregation step. The idea is simply to aggregate
each period’s historical returns, weighted by the relative size of the
position. This is where the method gets its name - “simulation”. We
calculate returns using historical data, but using today’s weights.
Suppose for example that we hold today positions in three equity port-
folios - indexed to the S&P 500 index, the FTSE index and the Nikkei
225 index - in equal amounts. These equal weights are going to be
used o calculate the return we would have gained J days ago if we
were to hold this equally weighted portfolio. This is regardless of the
fact that our equity portfolio J days ago may have been completely
? different. That is, we pretend that the portfolio we hold today is the
portfolio we held up to K days into the past (where K is our lookback
’ window size) and calculate the returns that would have been earned
.» From an implementation perspective this is very appealing and sim-
ple. This approach has another important advantage - note that we

do not estimate any parameters whatsoever. For a portfolio involving
N positions the VarCov approach requires the estimation of N volat-
: ilities and N(N - 1)/2 correlations. This is potentially a very large
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number, exposing the model to estimation error. Another important
issue is related to the estimation of correlation. It is often argued that
when markets fall, they fall together. If, for example, we see an abnor-
mally large decline of 10 percent in the S&P index on a given day,
we strongly believe that other components of the portfolio, e.g., the
Nikkei position and the FTSE position, will also fall sharply. This is
regardless of the fact that we may have estimated a correlation of, for
example, 0.30 between the Nikkei and the other two indexes under
more normal market conditions (see Longin and Solnik (2001)).

The possibility that markets move together at the extremes to a greater ;
degree than what is implied by the estimated correlation pararmeter :
poses a serious problem to the risk manager. A risk manager using
the VarCov appreach is running the risk that his VaR estimate for the
position is understated. At the extremes the benefits of diversification
disappear. Using the HS approach with the initial aggregation step may
offer an interesting solution. First, note that we do not need to esti-
mate correlation parameters (nor do we need to estimate volatility
parameters). If, on a given day, the S&P dropped 10 percent, the Nikkei
dropped 12 percent and the FTSE dropped 8 percent, then an equally
weighted portfolio will show a drop of 10 percent — the average of
the three returns. The following step of the HS methods is to order
the observations in ascending order and pick the fifth of 100 observa-
tions (for the 5 percent VaR, for example). If the iails are extreme,
and if markets co-move over and above the estimated correlations, it
will be tzaken into account through the aggregated data itself.

Figure 2.12 provides a schematic of the two alternatives. Given a set
of historical data and current weights we can either use the variance-
covariance matrix in the VarCov approach, or aggregate the returns
and then order them in the HS approach. There is an obvious third
alternative methodology emerging {from this figure. We may estimate
the volatility (and mean) of the vector of aggregated returns and assum-
ing normality calculate the VaR of the portfolio.

Is this approach sensible? If we criticize the normality assumption
we should go with the HS approach. If we believe normality we should
take the VarCov approach. What is the validity of this intermediate
approach of aggregating first, as in the HS approach, and only then
assuming normality as in the VarCov approach? The answer lies in
one of the most important theorens in statistics, the strong law of large
numbers. Under certain assumptions it is the case that an average of
a very large number of random variables will end up converging to a
normal random variable.
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It is, in principle, possible, for the specific components of the port-
folio to be non-normal, but {or the portfolio as a whole to be normally
distributed. In fact, we are aware ol many such examples. Consider
daily stock returns for exarple. Daily returns on specific stocks are
often far from normal, with extreme moves occurring for different stocks
at different times. The aggregate, well-diversified portfolio of these mis-
behaved stocks, could be viewed as normal (informally, we may say
the portfolio is more normal than its component parts — a concept that
could easily be quantified and is often tested to be true in the aca-
demic literature). This is a result of the strong law of large numbers.

Similarly here we could think of normality being regained, in spite
of the fact that the single components of the portfolio are non-
normal. This holds only if the portfolio is well diversified. If we hold
a portfolio comprised entirely of oil- and gas-related exposures, for
example, we may hold a large number of positions that are all sus-
ceptible to sharp movements in energy prices.

This last approach - of combining the first step of aggregation
with the normality assumption that requires just a single pararmeter
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estimate - is gaining popularity and is used by an increasing number
of risk managers.

24 |MPLIED VOLATILITY AS A PREDICTOR
OF FUTURE VOLATILITY

Thus far our discussion has focused on various methods that involve
using historical data in order to estimate future volatitity. Many risk
managers describe managing risk this way as similar to driving bv
looking in the rear-view mirror. When extreme crcumstances arise
in financial markets an immediate reaction, and preferably even a

preliminary indication, are of the essence. Historical risk estimation
techniques require time in order to adjust to changes in market con-
g ditions. These methods suffer from the shortcoming that they may

follow, rather than forecast risk events. Another worrisome issue is
that a key assumption in all of these methods is stationarity; that is,
the assurnption that the past is indicative of the future.

Financial markets provide us with a very intriguing alternative -
option-implied volatility. Tmplied volatility can be imputed from
derivative prices using a specific derivative pricing model. The
simplest example is the Black-Scholes implied volatility im puted from
equity option prices. The implementation is fairly simple, with a few
technical issues along the way. In the presence of multiple implied
volatilities for various option maturities and exercise prices, it is
common to take the at-the-money (ATM) implied volatility {rom puts
and calls and exirapolate an average implied; this implied is derived
from the most liquid (ATM) options. This implied volatility is a
candidate to be used in risk measurement models in place of his-
torical volatility. The advantage of implied volatility is that it is a
forward-looking, predictive measure.

A particularly strong example of the advantage obtained by using
implied volatility (in contrast to historical volatility) as a predictor of
future volatility is the GBP currency crisis of 1992. During the summer
of 1992, the GBP came under pressure as a result of the expectation
that it should be devalued relative 1o the European Currency Unit
(ECU) components, the deutschmark (DM) in particular (at the time
the strongest currency within the ECU). During the weeks preceding
the final drama of the GBP devaluation, many signals were present
in the public domain. The British Central Bank raised the GBP interest
rate. It also attempted to convince the Bundesbank to lower the DM
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Figure 2.13 lmplied and historical volatility: the GBP during the ERM
crisis of 1992

interest rate, but to no avail. Speculative pressures reached a peak toward
summet’s end, and the British Central Bank started losing currency
reserves, trading against large hedge funds such as the Soros fund.
The market was certainly aware of these special market conditions,
as shown in figure 2.13. The top dotted line is the DM/GBP exchange
rate, which represents our “event clock.” The event is the collapse of
the exchange rate. Figure 2.13 shows the Exchange Rate Mechanism
(ERM) intervention bands. As was the case many times prior to this
event, the most notable predictor of devaluation was already present
— the GBP is visibly close to the intervention band. A currency so close
to the intervention band js likely to be under attack by speculators on
the one hand, and under intervention by the central banks on the other.
This was the case many times prior to this event, especially with the
Ttalian lira’s many devaluations. Therefore, the marker was prepared
for a crisis in the GBP during the sumuner of 1992, Observing the thick
solid line depicting option-implied volatility, the growing pressure on
the GBP manifests itself in options prices and volatilities. Historical
volatility is trailing, “unaware” of the pressure. In this case, the situ-
ation is particularly problematic since historical volatility happens to
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decline as implied volatility rises. The fall in historical volatility is cue
to the fact that movements close 1o the intervention band are bound
to be smaller by the fact of the intervention bands’ existence and the
nature of intervention, thereby dampening the historical measure of
volatility just at the time that a more predictive measure shows
increases in volatility.

As the GBP crashed, and in the following couple of days,
RiskMetrics™ volatility increased quickly (thin solid line). However,
simple STDEV (K = 50) badly trailed events - it does not rise in tirne,
nor does it fall in time. This is, of course, a particularly sharp example,
the result of the intervention band preventing markets from fully
reacting to information. As such, this is a unique example. Does it
generalize to all other assets? Is it the case that implied volatility is a
superior predictor of future volatility, and hence a superior risk
reasurement tool, relative to historical? Tt would seem as if the
answer must be affirmative, since implied volatility can react irnme-
diately to market conditions. As a predictor of future volatility this is |
certainly an important feature. ;

Implied volatility is not free of shortcomings. The most important
reservation stems from the fact that implied volatility is model-
dependent. A misspecified model can result in an erroneous fore-
cast, Consider the Black-Scholes option-pricing model. This model ;
hinges on a few assuraptions, one of which is that the underlying asset 4
follows a continuous time lognormal diffusion process. The uncer-
lying assumption is that the volatility parameter is constant from the
V present time to the maturity of the contract. The implied volatility
s is supposedly this parameter. In rteality, volatility is not constant
over the life of the options contract. Implied volatility varies through
time. Oddly, traders trade options in “vol” terms, the volatility of the
underlying, fully aware that (i) this vol is implied from a constant volatil-
ity model, and (ii) that this very same option will trade tomorrow at
a different vol, which will also be assumed to be constant over the
remaining life of the contract.

Yet another problem is that at a given point in time, options on the
same underlying may trade at different vols. An example is the smile
effect — deep out of the money (especially) and deep in the money (to
a lesser extent) options trade at a higher vol than at the money options."”

The key is that the option-pricing model provides a convenijent
nonlinear transformation allowing traders to compare options with
different maturities and exercise prices. The true underlying process
is not a lognormal diffusion with constant volatility as posited by the
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model. The underlying process exhibits stochastic volatility, jumps, and
a nen-normal conditional distribution. The vol parameter serves as a
“kitchen-sink” parameter. The market converses in vol terms, adjusting
for the possibility of sharp declines (the smile effect) and variations in
volatility.

The latter effect - stochastic volatility, results in a particularly
difficult problem for the use of implied volatility as a predictor of future
volatility. To focus on this particular issue, consider an empirical
exercise repeatedly comparing the 30-day implied volatility with the
empirically measured volatility during the following month. Clearly,
the forecasts (i.e., implied) should be equal to the realizations (i.e.,
measured return standard deviation) only on average. It is well
understood that forecast series are bound to be smoother series, as ex- ;
pectations series always are relative to realization series. A reasonable
requirernent is, nevertheless, that implied volatility should be equal,
on average, to realized volatility. This is a basic requirement of every
forecast instrument — it should be unbiased.

Empirical results indicate, strongly and consistently, that implied
volatility is, on average, greater than realized volatility. From a mod-
eling perspective this raises many interesting questions, focusing
on this empirical fact as a possible key to extending and improving
option pricing models. There are, broadly, two common explanations.
The first is a market inefficiency story, invoking supply and demand
issues. This story is incomplete, as many market-inefficiency stories
are, since it does not account for the preserce of {ree entry and nearly
perfect competition in derivative markets. The second, rational mar-
kets, explanation for the phenomenon is that implied volatility is greater
than realized volatility due to stochastic volatility. Consider the follow-
ing facts: (i) volatility is stochastic; (il) volatility is a priced source of
risk; and (iii) the underlying model (e.g., the Black-Scholes model)
is, hence, misspecified, assuming constant volatility. The result is that
the premium required by the market for stochastic volatility will
manifest itself in the forms we saw above — implied volatility would
be, on average, greater than realized volatility.

From & risk management perspective this bias, which can be
expressed as Oy = O, + Stoch. Vol Premium, poses a problem for the
use of implied volatility as a predictor for future volatility. Correcting
for this premium is difficult since the premium is unknown, and requires
: the “correct” model in order to measure precisely. The only thing we
seem to know about this premium is that it is on average positive,
* since implied volatility is on average greater than historical volatility.
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It is an empirical question, then, whether we are better off with his-
torical volatility or implied volatility as the predictor of choice for future
volatility. Many studies have attempted to answer this question with
a consensus emerging that implied vclatility is a superior estimate. This
result would have been even sharper il these studies were to {focus on
the responsiveness of implied and historical to sharp increases in con-
ditional volatility. Such times are particularly important for risk man-
agers, and are the primary shortcoming associated with models using
the historical as opposed to the implied volatility.

In addition to the upward bias incorporated in the measures of implied
volatility, there is another more [undamental problem associated
with replacing historical volatility with implied volatility measures.
It is available for very few assets/market factors. In a covariance
matrix of 400 by 400 (approximately the number of assets/markets
that RiskMetrics™ uses), very few entries can be filled with implied
volatilities because of the sparsity of options trading on the underlying
assets. The use of implied volatility is confined to highly concentrated
portfolios where implied volatilities are present. Moreover, recall that
with more than one pervasive factor as a measure of portfolio risk,
one would also need an implied correlation. Implied correlations are
hard to come by. In fact, the only place where reliable liquid implied
correlations could be imputed is in currency markets.'®

As a result, implied volatility measures can only be used for fairly
concentrated portfolios with high foreign exchange rate risk exposure.
Where available, implied volatility can always be compared in real time
to historical (e.g., RiskMetrics™) volatility. When implied volatilities
get misaligned by more than a certain threshold level (say, 25 percent
difference), then the risk manager has an objective “red light” indi-
cation. This type of rule may help in the decision making process of
risk limit readjustment in the face of changing market conditions. In
the discussion between risk managers and traders, the comparison of
historical to implied can serve as an objective judge.'”’

2.5 LONG HORIZON VOLATILITY AND VaR

In many current applications, e.g., such as by mutual fund managers,
there is a need for volatility and VaR forecasts for horizons longer
5 than a day or a week. The simplest approach uses the “square root
' rule,” discussed briefly in Chapter 1. Under certain assumptions, to
be discussed below, the rule states that an asset’s J-period return
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volatility is equal to the square root of J times the single period return
volatility

O(ry10y) = V() X O 11)-
Similarly for VaR this rule is
J-perind VaR = V(J) x 1-period VaR.
The rule hinges on a number of key assumptions. It is important to
go through the procf of this rule in order to examine its limits. Con-

sider, first, the multiperiod continuously compounded rate of return.
For simplicity consider the two-period return:

Poez 3 Trert Toeieae
The variance of this return is

Var(r, ) = Var(f,) + Var(r., o) + 25Cov(r, .y, Ty ).

Assurning:

Al Cov(r, ey, Frmz) = 0,

A2: var(r, ) = var(r. .2),

we get

var(r, .,) = 2*var{r, . ),

and hence
STD(7;,2) = V(2)*STD(r,1.1)

Which is the square root rule for two periods. The rule generalizes
easily to the J period rule. !

The first assumption is the assumption of non-predictability, or the
ranndom walk assumption. The term cov{r, .. ..} is the autoco-
variance of returns. Intuitively the autecovariance being zero means
that knowledge that today's return is, for example, positive, tells us
nothing with respect to tomorrow’s return. Hence this is also a direct
result of the random walk assumption, a standard market efficiency
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Figure 2.14 Mean reverting process

assumption. The second assumption states that the volatility is the same
in every period (i.e., on each day).

In order to question the empirical validity of the rule, we need to
question the assumptions leading to this rule. The first assumption of
rion-predictability holds well for most asset return series in financial
markets. Equity returns are unpredictable at short horizons. The
evidence contrary to this assertion is scant and usually attributed to luck.
The same is true for currencies. There is some evidence of predictab-
ility at long horizons (years) [or both, but the extent of predictability
is relatively small. This is not the case, though, for many fixed-
income-related series such as interest rates and especially spreads.

Interest rates and spreads are commonly believed to be predictable
to varying degrees, and modeling predictability is often done through
time series models accounting {or autoregression. An autoregressive
process is a stationary process that has a long run mean, an average
level to which the series tends to revert. This average is often cailed
the “Long Run Mean” (LRM). Figure 2.14 represents a schernatic of
interest rates and their long run mean. The dashed lines represent the
expectations of the interest rate process. When interest rates are
below their LRM they are expected to rise and vice versa.

Mean reversion has an important effect on long-term volatility. To
understand the effect, note that the autocorrelation of interest rate
changes is no longer zero. If increases and decreases in interest rates
{or spreads) are expected to be reversed, then the serial covariance is
negative. This means that the long horizon volatility is overstated using
the zero-autocovariance assumption. In the presence of mean reversion in
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Table 2.4 Long horizon volatility

Mean reversion vJ rule using today’s volatility
In returns averstates true long horizon volatility
In return volatility If today’s vol. > LRM vol. then overstated

If today’s vol. < LRM vol. then understated

the underlying asset’s long horizon, volatility is lower than the square root
times the short horizor: volatility.

The second assumption is that volatility is constant. As we have seen
throughout this chapter. this assumption is unrealistic. Volatility is
stochastic, and, in particular, autoregressive. This is true for almost all
financial assets. Volatility has a long run mean - a “steady state” of
uncertainty. Note here the important difference — most financial
series have an unpredictable series of returns, and hence no long run
mean (LRM), with the exception of interest rates and spreads. How-
ever, most volatility series are predictable, and do have an LRM.

When current volatility is above its long run mean then we can expect
a decline in volatility over the longer horizon. Extrapolating long hor-
izon volatility using today’s volatility will overstate the true expected
long horizon volatility. On the other hand, if today’s volatility is unusu-
ally low, then extrapolating today’s volatility using the square root
rule rnay understate true long horizon volatility The bias — upwards
or downwards, hence, depends on today’s volatility relative to the LRM
of volatility. The discussion is summarized in table 2.4.

2.6 MEAN REVERSION AND LONG HORIZON VOLATILITY

Modeling mean reversion in a stationary time series framework is called
the analysis of autoregression (AR). We present here an AR(]) model,
which is the simplest form of mean reversion in that we consider only
one lag. Consider a process described by the regression of the time
series variable X

Xag=a+bX +e..

This is a regression of a variable on its own lag. It is often used in
financial modeling of time series to describe processes that are mean
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reverting, such as the real exchange rate, the price/dividend or
price/earnings ratio, and the inflation rate. Each of these series can be
modeled using an assumption about how the underlying process is
predictable. This time series process has a finite long run mean under
certain restrictions, the most important of which is that the para- ;
meter b is less than one. The expected value of X, as a function ol
period 1 information is

E[X. ]} =a-+ bX,.
We can restate the expectations as follows
E[X.,]=(1=b*a/{l = b)] + bX,.

Next period’s expectations are a weighred sum of today’s value, X,
and the long run mean a/(} — b). Here b is the key parameter, often
termed “the speed of reversion” parameter. If » = 1 then the process
is a random walk — a nonstationary process with an undefined
(infinite) long run mean, and, therefore, next period’s expected value
is equal to today’s value. If b < 1 then the process is mean reverting.
When X, is above the LRM, it is expected to decline, and vice versa.

By subtracting X, from the autoregression formula we obtain the
“return”, the change in X,

X ~X=a+bhX+te , —X

=a+lb-1X+e,

and rthe two period return is

X=X, =a+ab+ VX, +be + e, - X

=q(l + b) + (b* = DX+ be, + e
The single period conditional variance of the rate of change is

var(X,, — X,) = varfa + bX, + €., — X))

var,{€,.,)

I

= o

The volatility of e,,, is denoted by ¢. The two period volatility is
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market closes at 1:00 a.m. EST, fifteen hours earlier. Any information
that is relevant for global interest rates (e.g., changes in oil prices)
coming out after 1:00 a.m. EST and before 4:00 p.m. EST will influ-
ence today’s interest rates in the US and tomorrow’s interest rates in
Japan,

7 Recal! that the correlation between two assets is the ratio of their
? covariance divided by the product of their standard deviations

cor'r( Al‘r,ta IUSv Ait,m lJ“[‘)

= COV{AT, 0™, Al [STD (A1, ., ) FSTD (A ™).

Assume that the daily standard deviation is estimated correctly
irrespective of the time zone. The volatility of close-to-close equites
covers 24 hours in any time zone. However, the covariance term is
underestimated due to the nonsynchronisity problem.

The preblem may be less important for portfolios of few assets, but
as the number of assets increases, the problem becornes more and more
acute. Consider for example an equally weighted portlolio consisting
of n assets, all of which have the same daily standard deviation, denoted
¢ and the same cross correlation, denoted p. The variance of the port-
folio would be

62= (1/m)a® + (1 - 1/n)pc?,

The first term is due to the own asset variances, and the second term
is due to the cross covariance terms. For a large », the volatility of the
portfolio is ps?, which is the standard deviation of each asset scaled
down by the correlation parameter. The bias in the covariance would
translate one-for-one into a bias in the portfolio volatility.

For US and Japanese ten year zero coupon rate changes for example,
this may result in an understatement of porifolio volatilities by up to
50 percent relative to their true volatility. For a global portfolio of long
positions this will result in a severe understatement of the portfolio’s
risk. Illusionary diversification benefits will result in lower-than-true
VaR estimates.

There are a number of solutions to the problem. One solution could
be sampling both market open and market close quotes in order to
make the data more synchronous. This is, however, costly because more
data are required, quotes may not always be readily available and quotes
may be iniprecise. Moreover, this is an incomplete solution since some
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nonsynchronicity still remains. There are two other alternative
avenues for amending the problem and correcting for the correlation
in the covariance term. Both alternatives are simple and appealing from
a thecretical and an empirical standpoint.

The first alternative is based on a natural extension of the random
walk assumption. The random walk assumption assumes consecut-
ive daily returns are independent. In line with the independence
assumption, assume intraday independence — e.g., consecutive hourly
returns — are independent. Assume further, for the purpose of
demonstration, that the US rate is sampled without a lag, whereas
the Japanese rate is sampled with some lag. That is, 4:00 p.m. EST is
the “correct” time for accurate and up to the minute sampling, and
hence a 1:00 a.m. EST. quote is stale. The true covariance is

cov (AL, AL

- [ o ; ,/. ; . ooy N . . )
= COVE(AT,,L, Y AT, M)+ covP (Al " Al ™),

a function of the contemporancous observed covariance plus the
covariance of today’s US change with tomorrow’s change in Japan.

The second alternative for measuring true covariance is based on
another assumption in addition to the independence assumption;
the assumption that the intensity of the information flow is constant
intraday, and that the Japanese prices/rates are 15 hours behind US
prices/rates. In this case

COVI( Ay U5, Ady ) = [241(24 = 15)]%cov™ (AL ", AL, ™).

The intuition behind the result is that we observe a covariance which
is the result of a partial overlap, of only 9 out of 24 hours. If we believe
the intensity of news throughout the 24 hour day is constant than we
need to inflate the covariance by multiplying it by 24/9 = 2.66. This
method may result in a pecuiiar outcome, that the correlation is greater
than one, a result of the assumptions. This factor will transter directly
to the correlation parameter — the numerator of which increases by a
factor of 2.66. while the denominator remains the same. The factor
by which we need to inflate the covariance term falls as the level of
nonsynchronicity declines. With London dosing 6 hours prior to New
York, the factor is smaller — 24/(24 - 6) = 1.33.

Both alternatives rely on the assumption of independence and simply
extend it in a natural way {rom interday to intraday independence.
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This concept is consistent, in spirit, with the kind of assumptions back-
ing up most extant risk measurernent engines. The first alternative relies
only on independence, but requires the estimation of one additional
covariance moment. The second alternative assumes in addition to inde-
pendence that the intensity of news flow is constant throughout the
trading day. Its advantage is that it requires no further estimation.'®

2.8 SUMMARY

This chapter addressed the motivation for and practical difficulty in
creating a dynamic risk measurement methodology to quantify VaR.
The motivation for dynamic risk measurement is the recognition
that risk varies through time in an economically meaningful and in
a predictable manner. One of the many results of this intertemporal
volatility in asset returns distributions is that the magnitude and
likelihood of tail events changes though time. This is critical for the
risk manager in determining prudent risk measures, position limits,
and risk allocation.

Time variations are often exhibited in the form of fat tails in asset
return distributions. Cne attempt is to incorporate the empirical
cbservation of fat tails is to allow volatility to vary tarough time.
Variations in volatility can create deviations from norrality, but to
the extent that we can rneasure and predict volatility through time
we may be able to recapture nonmality in the conditional versions,
i.e., we may be able to model asset returns as conditionally normal
{ with time-varying distributions.

As it turns out, while indeed volatility is time-varying, it is not the
case that extreme tails events disappear once we allow for volatility
to vary through time. It is still the case that asset returns are, even
conditionally. fat tailed. This is the key motivation behind extensions
of standard VaR estimates obtained using historical data to incor-
porate scenario analysis and stress testing. This is the focus of the next
chapter.

APPENDIX 2.1 BACKTESTING METHODOLOGY AND RESULTS

In Section 2.2, we discussed the MSE and regression methods for com-
paring standard deviation forecasts. Next, we present a more detailed
discussion of the methodology for backtesting VaR methodologies. The
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dynamic VaR estimation algorithm provides an estimate of the x per-
: cent VaR for the sample period for each of the methods. Therefore,
the probability of observing a return lower than the calculated vaR
should be x percent:

prob[r_, ,< =VaR,] = x%.

There are a few attributes which are desirable for VaR,. We can think
of an indicator varieble I, which is 1 if the VaR is exceeded, and 0
otherwise. There is no direct way to observe whether our VaR esti-
mate is precise; however, a nuinber of different indirect measurements
will, together, create a picture of its precision.

The first desirable attribute is unbiasedness. Specifically, we require
that the VaR estimate be the x percent tail. Put differently, we require
that the average of the indicator variable I, should be x percent:

avz[l] = x%.

This attribute alone is an insufficient benchmark. To see this, consider
the case of a VaR estimate which is constant through time, but is also
highly precise unconditionally (i.e., achieves an average VaR prob-
ability which is close to x percent). To the extent that tail probability
is cyclical, the occurrences of violations of the VaR estimate will be
“bunched up” over a particular state of the economy. This is a very
undesirable property, since we require dynamic updating which is
sensitive to market conditions.

Consequently, the second attribute which we require of a VaR esti-
mate is that extreme events do not “bunch up.” Put differently, a VaR
estimate sheuld increase as the tail of the distribution rises. If a large
return is observed today, the VaR should rise to make the prababil-
ity of another tail event exactly x percent tomorrow. In terms of the
indicator variable, I, we essentially require that I, be independently
and identically distributed (i.i.d.). This requirement is similar to
saying that the VaR estimate should provide a filter to transform a
serially dependent return volatility and tail probability into a serially
independent [, series.

The simplest way to assess the extent of independence here is to
examine the empirical properties of the tail event occurrences, and
compare them to the theoretical ones. Under the null that [, is inde-
pendent over time

corr[L.,*1,] = 0 Vs,
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that is, the indicator variable should not be autocorrelated at any lag.
Since the tail probabilities that are of interest tend to be small, it is
verv difficult to make a distinction between pure luck and persistent
error in the above test for any individual correlation. Consequently,
we consider a jeint test of whether the first five daily autocorrelations
(one trading week) are equal to zero.

Note that for both measurements the desire is essentially to put all
data periods on an equal footing in terms of the tail probability. As such,
when we examine a number of data series for a given method, we
can aggregate across data series, and provide an average estimate of
the unbiasedness and the independence of the tail event probabilities.
While the different data series may be correlated, such an aggregate
irnproves our statistical power.

The third property which we examine is related to the first property
~ the biasedness of the VaR series, and the second property - the
autocorrelation of tail events. We calculate a rolling measure of the
absolute percentage error. Specifically, for any given period, we look
forward 100 perjods and ask how many tail events were realized. Il
the indicator variable is both unbiased and independent, this number
is supposed to be the VaR’s percentage level, namely x. We calculate
the average absolute value of the difference between the actual
number of tail events and the expected number across all 100-period
windows within the sample. Smaller deviations from the expected
value indicate better VaR measures.

The data we use include a number of series, chosen as a represen-
tative set of “interesting” economic series. These series are interesting
since we a priori believe that their high order moments (skewness and
kurtosis) and, in particular, their tail behavior, pose different degrees
of challenge to VaR estimation. The data span the period from
January 1, 1991 to May 12, 1997, and include data on the following:

s DEM the dollar/DM exchange rate;

¢ OIL the spot price for Brent crude oil;

e SHP the S&P 500 Index;

¢ BRD a general Brady bond index (JP Morgan Brady Broad
Index).

We have 1,663 daily continuously compounded returns for each
series.

In the tables, in addition to reporting summary staristics for the tour
series, we also analyze results for:
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+ EQW an equally weighted portfolio of the four return series
» AVG statistics for tail events averaged across the four series.

The EQW results will give us an idea of how the methods perform
, when tail events are somewhat diversified (via aggregation). The AVG
portfolio simply helps us increase the effective size of our sarnple. That
é is, correlation aside, the AVG statistics mav be viewed as using four
times more data. Its statistics are therefore more reliable, and provide
a more coraplete picture for general risk management purposes. There-
fore, in what follows, we shall refer primarily to AVG statistics, which
include 6,656 observations.

In the tables we use a 250-trading day window throughout. This is,
of course, an arbitrary choice, which we make in order to keep the
tables short and informative. The statistics for each of the series
include 1,413 returns, since 250 observations are used as back data.
The AVG statistics consist of 5,652 data points, with 282 tail events
expected in the 5 percent tail, and 56.5 in the 1 percent tail.

In table 2.5 we document the percentage of tail events for the 5
percent and the 1 percent VaR. There is no apparent strong prefer-
ence among the models for the 5 percent VaR. The realized average

Table 2.5 Comparison of methods - results for empirical tail probabilities

Histeorical Historical ' EXP Hybrid
STD simulation

0.97 0.99 0.97 0.99

5% Tail

DEM 5.18 5.32 5.74 5.18 5.25 5.04
3 OIL 5.18 4.96 5.60 5.39 5.18 5.18
1 S&P 4.26 5.46 4.68 4.18 6.17 5.46
{ BRD 4.11 5.32 4.47 4.40 5.96 5.46
!: EQW 4.40 4.96 5.04 4.26 5.67 5.39
AVG 4.562 5.21 5.11 4.68 5.65 5.30

1% Tail

DEM 1.34 1.06 2.20 1.63 1.84

OIL 1.34 1.13 1.77 1.77 1.70 .
S&pP 2.06 1.28 2,20 213 1.84 1.42
BRD 2.48 1.35 2.70 2.41 1.63 1.3
EQW 1.63 1.49 1.42 1.42 1.63 1.2
AVG 1.97 1.26 2.06 1.87 1.73 1.3
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Table 2.6 Rolling mean absolute percentage error of VaR

Historical Historical EXP Hybrid
STD simulation

0.97 0.99 0.97 .99
5% Tail
DEM 2.42 2.42 1.58 2.11 1.08 1.77
CIL 2.84 2.62 2.36 2.67 1.93 2.44
S&P 1.95 1.91 1.52 1.85 1.72 1.68
BRD 3.41 3.53 3.01 3.34 2.54 2.97
EQW 2.43 2.36 2.48 2.33 1.50 2.20
AVG 2.61 2.57 2.19 2.46 1.76 2.2}
1% Tail
DEM 1.29 0.87 1.50 1.12 1.02 0.88
OIL 1.71 0.96 1.07 1.39 0.84 0.80
s&p 1.45 1.14 1.40 1.42 0.99 0.82
BRD 2.15 1.32 1.98 2.06 1.03 1.12
EQW 1.57 1.52 1.25 1.25 0.72 0.87
AVG 1.63 1.16 1.44 1.45 0.92 0.90

varies across methods, between 4.62 percent and 5.65 percent.'” A
preference is observed, however, when examining the empirical
performance for the 1 percent VaR across methods. That is, HS and

5 Hybrid (A = 0.99) appear to yield results that are closer to 1 percent
4 than the other methods. Thus, the nonparameiric methods, namely
: HS and Hybrid, appear to outperform the parametric methods for these

data series, perhaps because nonparametric methods, by design, are
better suited to addressing the well known tendency of financial
return series to be fat tailed. Since the estimation of the 1 percent tail
requires a lot of data, there seems to be an expected advantage to high
smoothers (A = 0.99) within the hybrid method.

In table 2.6 we document the mean absolute error (MAE) of the
VaR series. The MAE is a conditional version of the previous stat-
istic (percentage in the tail from table 2.4). The MAE uses a rolling
100-period window. Here again, we find an advantage in favor of the
rionpararaetric methods, HS and Hybrid, with the hybrid method
performing best for high A (A = 0.99) (note, though, that this is aot
always true: A = 0.97 outperforms for the 5 percent for both the hybrid
and the EXP). Since a statistical error is inherent in this statistic, we
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Table 2.7 First-order autocorrelation of the tail events

Historical Historical EXP Hybrid
STD simulation

0.97 0.99 0.97 .99
5% Tail
DEM .39 0.09 -2.11 -1.06 -2.63 ~2.28
OIL 1.76 2.29 2.11 1.25 3.20 0.31
S&P 0.77 1.09 -0.15 0.94 0.77 2.46
BRD 11.89 12,69 13.6C 12.27 10.12 12.08
EQW 5.52 2.29 3.59 4.26 -2.04 -0.14
AVG 4.07 3.69 341 3.53 1.88 2.49
1% Tail
DEM 2.04 -1.08 1.05 2.76 -~1.88 -1.29
OIL -1.88 -1.15 2.27 2.27 -~1.73 -1.37
S&pP 4.94 9.9% 7.65 8.04 2.04 8.70
BRD 15.03 9.30 10.7% 12.60 —-1.66 3.97
EQW 2.76 3.32 3.62 3.63 2.76 4.73
AVG 4.58 4.07 5.07 5.86 -0.09 2.95

cannot possibly expect a mean absolute error of zero. As such, the 38
percent improvement of the hybrid method with A of 0.99 (with MAE
of 0.90 percent for the AVG series’ 1 percent tail) relative to the EXP
method with the same A (with MAE of 1.45), is an understatement
of the level of improvement. A more detailed simulation exercise would
be needed in order to determine how large this improvement is. It is
worthwhile to note that this improvement is achieved very persistently
across the different data series.

The adaptability of a VaR method is one of the most critical ele-
ments in determining the best way to measure VaR. When a large
return is observed, the VaR level should increase. It should increase,
however, in a way that will make the next tail event’s probability
precisely x percent. We can therefore expect these tail event realiza-
tions 10 be i.i.d. (independent) events with x percent probability. This
independence can be examined using the autocorrelation of tail
events, with the null being that autocorrelation is zerc. As we see in
table 2.7, the hybrid method’s autocorrelation for the AVG series is
closest 10 zero. Interestingly, this is especially true for the more {at-
tailed series, such as BRD and OIL. As such, the hybrid method is very
well suited for fat tailed, possibly skewed series.
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Table 2.8(a) Test statistic for independence (autocorrelations 1-5)

Historical Historical EXP Hybrid
STD simulation
0.97 0.99 0.97 0.99
5% Tail
DEM 7.49 10.26 3.80 8.82 3.73 6.69
OIL 9.58 12.69 5.82 4.90 4.71 3.94
S&pP 8.09 3.32 c.88 4.31 0.81 3 87
BRD 66.96 87.80 88.30 78.00 46.79 69.29
EQW 16.80 6.30 11.66 14.75 4.87 1210
AVG 21.78 25.07 22.09 22.16 12.18 19.18
1% Tail ,
DEM 3.34 5.33 4.56 4.39 7.58 3.83
OIL 3398 8.29 3.82 18.89 8.53 3.54
S&P 14.67 36.15 22.68 25.18 3.26 24.10
BRD 88.09 29.37 41.60 82.77 11.26 11.36
EQW 41.55 14.69 16.85 16.85 5.08 13.05
AVG 36.32 18.77 17.90 29.61 7.14 11.18

Table 2.8(b) p-value for independence fautocorrelations 1-5)

Historical Historical EXP Hybrid
STD simulation

0.97 0.99 0.97 0.99
5% Tail
DEM .19 0.07 0.58 0.12 0.59 0.24
OIL 0.09 0.03 0.32 0.43 0.45 0.55
S&P 0.15 0.14 0.97 0.51 0.98 0.57
EBRD 0.00 0.00 0.00 0.00 0.00 0.00
EQW 0.00 0.28 . 0.04 0.01 0.43 0.03
AVG 0.09 0.10 0.38 0.21 0.49 0.28
1% Tail
DEM 0.65 .38 047 0.49 0.1& .57
OIL 0.00 .14 0.58 0.00 0.12 .62
S&P 0.01 ¢.00 0.00 0.00 0.66 .00
BRD 0.00 .00 0.00 0.00 0.05 .04
EQW 0.00 0.01 0.00 0.00 0.41 0.02
AVG 0.13 0.11 0.21 0.10 0.28 .25
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In tables 2.8a and b we test the statistical significance of the auto-
correlations in table 2.7. Specifically, we examine the first through fifth
autocorrelations of the tail event series, with the null being that all
of these autocorrelations should be zero. The test statistic is simply the
sum of the squared autocorrelations, appropriately adjusted to the W
sample size. Under the null this siatistic is distributed as x*(5). These 00
test siatistics are generally lower for the hybrid method relative to the ,\\g\
EXP. For the specific series four rejections out of a possible eight a ENN
obtained with the hybrid method, relative to seven out of cigh,K‘
the EXP method. fb
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